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Abstract— In this study, we propose a method of social
interactive human intention prediction and categorization for
socially aware robot navigation in dynamic social environments.
The proposed method is composed of two functional blocks:
(1) social interactive intention prediction using human states
and social cues, (2) categorizing and modeling the social
interactive intentions. To evaluate the proposed method, we
incorporated it into our developed framework of socially aware
robot navigation system. The simulation results show that the
social interactive intention prediction enables the mobile robot
to not only approach but also avoid humans in a socially
acceptable manner, guaranteeing human comfort and safety
in their surrounding environment.

I. INTRODUCTION

Socially aware mobile robot navigation systems have been
well studied in recent years [1], [2]. The main objective of
these systems is to guarantee the socially acceptable manner
(human safety and comfort) during the robot navigation. In
general, these robot navigation systems can be divided into
two groups: (1) avoiding human, (2) approach human.

In the former, a mobile robot must distinguish humans
from regular obstacles, then extract human features such
as human states (human position, orientation, motion, field
of view) relative to the mobile robot and social interaction
features of the human–object and human group interactions
from the socio-spatio-temporal characteristics of the humans
and human groups. The human and social interaction features
are modelled and incorporated into the robot navigation sys-
tem [3], [4] and [5]. In the later, an approaching pose of the
mobile robot to an individual or groups of people is estimated
and predicted, then incorporated into the motion planning
system to generate motion control commands enabling the
mobile robot to approach individuals, human groups, and
human-object interactions [6], [7] and [8]. Although these
conventional robot navigation systems are capable of driving
the mobile robot to avoid and approach humans in a socially
acceptable manner, and providing respectful and polite be-
haviors akin to the humans, they still surfer the following
drawbacks if we wish to deploy the robots into our daily
life settings: (1) a robot should react according to social
cues and signals of humans (facial expression, voice pitch
and tone, body language, human gestures), and (2) a robot
should predict future action of the human.
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Human intention information has been studied and incor-
porated into robotic systems. Human intention essentially
means the goal of his/her current and/or upcoming action
as well as motion towards the goal. The human intention
was successfully applied to trajectory planning of robot ma-
nipulation [9], [10], [11], mobile robot navigation [12], [13],
[14], [15], [16], and autonomous driving [17], [18]. However,
these motion planning systems only predict and incorporate
the human motion intention for human avoidance, not human
approaching which is essential for applications of mobile
service robots.

Unlike the aforementioned human intention prediction and
estimation, we propose a new method of social interactive
intention prediction and categorization for socially aware
robot navigation systems. Incorporating the social interactive
intention information in a robot navigation system, we equip
the mobile robot with the capacity of adapting to various
social situations and interacting with people in dynamic
social environments. Because human intention information
will be mental states that represent commitments of carrying
out on-going actions and human social interactive intention
indicates how a human wishes to interact with a robot,
other humans or interesting object. We categorize the social
interactive intention in three groups: (1) human–robot inter-
active intention (a human intends to interact with a robot),
(2) human group interactive intention (a human intends to
interact with another human in a group), and (3) human–
object interactive intention (a human intends to interact with
an interesting object).

The rest of this paper is organized as follows. The so-
cial interactive intention prediction and categorization for
a socially aware robot navigation system is presented in
section II. Section III describes the system integration of the
proposed method into a differentially driven wheeled mobile
robot. Section IV shows the simulation results. We conclude
our paper in section V.

II. THE PROPOSED FRAMEWORK

A. Social Interactive Intention Prediction

To ensure the human safety and comfort and generate the
socially acceptable behaviours of a mobile robot in a human–
robot social interaction, the robot should predict on-going
and upcoming actions of humans and behave accordingly. In
this paper, we propose a social interactive intention predic-
tion method of extracting externally observable information
of humans using the robot perception system.

In a social interaction, human intention can be predicted
by key social cues, e.g. facial expression, body language,
voice pitch and tone, personal space, human states [19].
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Fig. 1: The block digram of the social interactive intention
prediction system.

In this paper, we omit the voice pitch and tone and only
utilize the social cues based on visual information as major
cues used determine the social interactive intention. Using a
robot vision system, we can extract facial expression, 3D
human pose, human states (position, orientation, motion),
and interesting objects as social interactive information, as
shown in Fig. 1.

We adopt the multiple objects detection and tracking
system proposed by Thang et al. [20] to detect humans and
recognize interesting objects in the robot’s vicinity. The face
detection is based on Single-Shot-Multibox detection method
[21], and using 10-layer residual networks architecture as the
backbone [22]. We utilize the deep neural network presented
in [23] for human facial expression recognition with the face
database [24].

Conventionally, the human intention prediction took ad-
vantages of the hidden Markov model [12] or partially
observable Markov decision process [17]. However, inspired
by the potentials of the deep learning methods in robotics
[25], in this study we adopted the Long short-term memory
(LSTM) networks [26] for predicting the social interactive in-
tention. Because the LSTM networks have been successfully
used to learn and generalize the properties of data sequences
like hand writing recognition [27] and time series like speech
recognition [28]

B. Social Interactive Intention Categorization and Modelling

1) Social Interactive Intention Categorization: The social
interactive intention information predicted by the robot vision
system in section II-A can be incorporated into the mobile
robot navigation system for avoiding and approaching be-
haviours, and divided into three group as follow:

Human–robot interactive intention: If a robot intends
to interact with a human and the robot predicts that a
human intents to interact with it, the robot should estimate
the approaching pose, and plan to approach the human. In
contract, if the human does not intend to interact with the
robot, the robot should plan to avoid the human in a socially
acceptive manner.

Human–human interactive intention: When a robot
predicts that humans intend to interact with other humans
in the robot’s vicinity, the robot should plan to avoid or
approach the human group with respect to the rules of social
interactive group.

Human–object interactive intention: In this case, when
the mobile robot predicts that humans intend to interact
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Fig. 2: The social interactive intention prediction embedded
into the dynamic social zone of the socially aware mobile
robot navigation framework.

with an interesting object. The robot should plan to avoid
and approach with respect to the rules of the human-object
interaction.

2) Social Interactive Intention Modeling: In this paper, in
order to demonstrate the usefulness of the social interactive
intention information, we incorporate it into the dynamic
social zone proposed by Truong et al. [29] and [7]. As
seen in Fig. 2, the social interactive intention information
is used as an input of the dynamic social zone. Particularly,
the social interactive intention will be the additional factors
in modelling of the space around the human, human group,
and human–object interaction.
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Fig. 3: Hall model and extended personal space: (a) Hall
model [30], (b) basic personal space, and (c) extended
personal space with the velocity information.

Specifically, we incorporated the social interactive in-
tention into the extended personal space developed in our
previous work [7], as shown in Fig. 3. The pair of parameters
σ

px
i and σ

py
i of person pi is re-calculated as stated in

Algorithm 1. The output of the Algorithm 1 is a new pair
of parameters σ

px
inew

and σ
py
inew

, used to build the extended
personal space around human pi. Algorithm 1 can be roughly
divided into four cases according to the social interactive
intention prediction, as explained in Section II-A:

Case 1 - Human–robot interactive intention: If human
pi intends to interact with the mobile robot, the extended
personal space around human pi is the basic personal space
(line 5 in Algorithm 1), as shown in Fig. 3b. In contract, if
human pi does not want to interact with the robot, e.g. being



angry, the extended personal space of human pi is expanded
using the fint factor (line 8 in Algorithm 1). If human pi
is in natural emotion, the extended personal space remains
unchanged.

Case 2 - Human–human interactive intention: If the
robot predicts that human pi intends to interact with human
p j, the extended personal space of the human pi will be
expanded towards the direction of human p j and vice versa.
That is, the social interactive group between human pi and
p j is changed accordingly.

Case 3 - Human–object interactive intention: If human
pi intends to interact with an interesting object ob j j, the
extended personal space of human pi will be extended
towards the direction of object ob j j.

Case 4 - Otherwise: The extended personal space of
human pi will remain unchanged like the extended personal
space calculated in Algorithm 1 in [7]. That is, the pair σ

px
i

and σ
py
i is used in the role of σ

px
inew

and σ
py
inew

to model the
space around the human.

Algorithm 1: Compute σ
px
inew

,σ py
inew

input : Social interactive intention, σ
px
0 ,σ py

0 ,
σ

px
i ,σ py

i , pi = (xp
i ,y

p
i ), p j = (xp

j ,y
p
j ),

ob j = (xob
j ,yob

j )

output: σ
px
inew

,σ py
inew

1 begin
2 switch social interactive intention do
3 case human–robot interactive intention do
4 if a human intends to interact with a

robot then
5 σ

px
inew
← σ

px
0 ,σ py

inew
← σ

py
0 ;

6 else
7 if human does not intend to interact

with a robot then
8 σ

px
i ← (1+ fint)σ

px
0 ;

σ
py
i ← (1+ fint)σ

py
0 ;

9 else /* human is in natural
emotion */

10 σ
px
inew
← σ

px
i ,σ py

inew
← σ

py
i ;

11 case human–human interactive intention do

12 σ
py
inew
←

√
(xp

i −xp
j )

2+(yp
i −yp

j )
2

2

13 case human–object interactive intention do

14 σ
py
inew
←

√
(xp

i −xob
j )2+(yp

i −yob
j )2

2

15 otherwise do
16 σ

px
inew
← σ

px
i , σ

py
inew
← σ

py
i ;

17 return σ
px
inew

,σ py
inew

;

III. SYSTEM INTEGRATION

In this study, in order to demonstrate the usefulness of
the social interactive intention information, we incorporate

this information into our previous framework of socially
aware robot navigation system in [29] and [7]. Truong
et al. [29] and [7] presented a socially aware navigation
framework, which was based on the conventional robot
navigation system [31], for mobile robot in dynamic social
environment. In those papers, we proposed the dynamic
social zone representing the space around individuals, human
groups, human–object interaction using human states (human
position, motion, orientation, field of view, and hand poses)
and the basic rules of social interaction. Once the dynamic
social zone has been generated around humans and social
interactions, and the approaching pose of the mobile robot
to a human has been calculated using the approaching pose
prediction, as seen in Fig. 2, the motion planning system
automatically generates the control command u = [uv,uω ]
to drive the robot to approach the human while socially
maintaining a certain distance with other humans, social
interactions, and regular obstacles. In this study, we exam-
ined the D-star path planning algorithm [32] to generating a
feasible path and the dynamic window approach algorithm
[33] to generating the velocity commands of the differentially
driven mobile robot platform. We define the state of the
robot r(t) = (xr(t),yr(t),θr(t)) at time t, where the position
is (xr(t),yr(t)), and the orientation is θr(t). The state of the
robot at time (t +1) is governed by the following equations:xr(t +1)

yr(t +1)
θr(t +1)

=

xr(t)
yr(t)
θr(t)

+


vr
r+vl

r
2 cos(θr(t))dt

vr
r+vl

r
2 sin(θr(t))dt

vr
r−vl

r
L dt

 (1)

where vr
r and vl

r are the linear velocity commands of the right
and left wheels of the robot, respectively, and L denotes the
wheelbase of the robot. The linear velocity commands of the
right and left wheels of the robot vr

r and vr
l are computed as

follows: [
vr

r
vr

l

]
=

[
1 L

2
1 −L

2

][
uv
uω

]
(2)

where the linear velocity command uv and the angular
velocity command uω are generated by the dynamic window
approach technique.

IV. EXPERIMENTS

To verify the feasibility of the proposed social interactive
intention prediction and categorization for socially aware
mobile robot navigation systems, we conduct experiments
in the simulation. The social interactive intention prediction
algorithm was implemented using Python and transferred to
the MATLAB for modelling the dynamic social zone and
the approaching pose prediction. Using input of the dynamic
social zone and approaching pose prediction, the motion
planing system of the mobile robot then generated a feasible
trajectory of the robot. In this paper, we used an empirical
set σ

px
0 = σ

py
0 = 0.45 and fint = 3σ

py
0 .

A. Experiment 1: Social interactive intention prediction

In this experiment, the people were standing in front of
the mobile robot. The robot utilized the proposed social
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Fig. 4: The example results of the social interactive intention prediction system: (a) a person intends to interact with the
robot; (b) a person is in natural state; (c) a person does not intend to interact with the robot; and (d) a person intends and
the other does not intend to interact with the robot.
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Fig. 5: The example results of the socially aware mobile robot navigation framework. The first row shows the experiment
scenarios. The second row illustrates the extended personal space of the human and the trajectory of the mobile robot
corresponding to each social interactive intention categories: (a) and (d) the human–object interactive intention, (b) and (e)
human–human interactive intention, and (c) and (f) human–robot interactive intention.

interactive intention prediction to predict whether the human
did or did not intend to interact with the robot. As seen
in Fig. 4, the proposed system were capable of detecting
the human body and face, and predicting the the social
interactive intention of every person in the robot’s vicinity.

B. Experiment 2: Human–object interactive intention

In this experiment we aim to examine whether a human
intends to interact with a interesting object. Figure 5a shows

that the robot vision system successfully detected a moving
person and recognized the interesting objects (screen). More-
over, it indicated that a person intends to interact with the
objects. Figure 5d shows a trajectory of the mobile robot.
It indicates that the robot must navigate behind the human
in respect to the human–object interactive space, which is
considered as a socially acceptable behaviour.



C. Experiment 3: Human–human interactive intention

The objective of this experiment is to examine the response
of the socially aware robot navigation system when a person
intends to interact with the other. As seen in Fig. 5b, the robot
detected two people within its field of view and predicted that
such people intend to interact with each other. Figure. 5e
illustrates that the mobile robot was capable of avoiding a
social interactive group in a socially acceptable manner.

D. Experiment 4: Approaching a person

In this experiment, we verify the role of the social interac-
tive intention prediction for human approaching behaviour.
As seen in Fig. 5c, the robot detected two people in its field
of view but only the person over the left was willing to
interact with the mobile robot while the person on the right
was in natural status. Therefore, the mobile robot decided to
approach the person on the left and avoid the person on the
right, as shown in Fig. 5f.

Overall, the experimental results shown in Figs. 4 and 5
highlight that the mobile robot equipped with the proposed
social interactive intention prediction and categorization is
capable of not only avoiding but also approaching humans
in socially acceptable manners while still guaranteeing the
human safety and comfort dynamic social environments.

V. CONCLUSIONS

We have presented a social interactive intention predic-
tion and categorization for socially aware robot naviga-
tion systems in dynamic social environments. The proposed
framework was composed of two major functional blocks
including (1) social interactive intention prediction based
on human sates and social cues, (2) modelling and cat-
egorization of social interactive intention. We integrated
our social interactive intention prediction and categorization
into our previously developed framework of socially aware
robot navigation system for experiment and evaluation. Our
experiment results showed that the social interactive intention
prediction and categorization enabled a mobile robot to not
only approach but also avoid humans in socially acceptable
manners, providing the comfort and safety for the human in
the surrounding environment.

In the future, we will implement the method on our mobile
robot platform and evaluate its performance in several social
situations. In addition, various kinds of social cues and
signals presented in [34] and [35] will be incorporated into
the social interactive intention prediction system so that the
robot is capable of dealing with more complicated social
situations and contexts.
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